
Discrete Math for Engineers (MTH 314): Notes

Adam Szava

Winter 2022

Introduction

This document is a compilation of my notes from Discrete Math for Engineers
(MTH 314) from Ryerson University. All information comes from my professor’s
lectures, the course textbook Discrete Mathematics by Anthony Bonato, and
online resources.

1

Contents

1 Chapter 1: Sets and Logic 3

2 Chapter 2: Graphs and Trees 22

3 Chapter 3: Relations and Functions 25

4 Chapter 4: Combinatorics 34

5 Chapter 5: Number Theory 34

2

1 Chapter 1: Sets and Logic

1.2: Sets

This course begins with the study of sets, and operations we can apply to sets.
This forms a basis for the rest of the course (and essentially all of mathematics).

A set is an unordered collection of things which doesn’t con-
sider repetition.

Definition 1.2.1 Sets

Each thing in a set is called an element of that set. We can explicitly define a
set by writing out its elements between curly braces:

{element 1, element 2, . . . , element n}

For example (let’s say A is another set):

S = {4, ”apple”, A}

Here, S is a set which contains three elements:

� The number 4 is an element of S, written as:

4 ∈ S

� The string ”apple” is an element of S, written as:

”apple” ∈ S

� The set A is an element of S, written as:

A ∈ S

The takeaway from this example is that elements of a set can be number (as
we have studied before) but they can also by any ”thing” you are studying. In
linear algebra they were often vectors.

There are a few important sets but before that we want to talk about an im-
portant definition regarding sets, a way to think about how big a set is compared
to another:

Given a set A, |A| is equal to the number of elements in A.
|A| is called the cardinality of A.

Definition 1.2.2 Cardinality

3

For example: ∣∣{3, 4, 5, 6}∣∣ = 4∣∣{3, 4, 5, 5}∣∣ = 3

The following are some important sets with their cardinality:

Set Name Symbol Description Cardinality
Null Set or Empty Set ∅ The set which con-

tains no elements.
0

Set of Natural Numbers N {0, 1, 2, 3, ...} ∞
Set of Integers Z {. . . ,−2,−1, 0, 1, 2, ...} ∞

Set of Rational Numbers Q The set which con-
tains every possible
fraction.

∞

Set of Real Numbers R This set extends Q
with irrationals.

∞

Singleton {x} The set which con-
tains one element x.

1

Doubleton/Unordered Pair {x, y} The set which con-
tains two elements x
and y.

2

It is important to note that ∅ 6= {0}. The empty set contains no elements, the
set on the right contains one element, that being 0. Another important thing
to consider is that ∅ 6= {∅} the difference between these two sets is the same as
the difference between an empty box and a box which contains an empty box.

The best way to think about sets is by imagining a box. This will help you
in understanding the difference between expressions like:

{0} {{0}} {0, {0, {0}}}

� The first set is the set which contains zero. Think of this as a box which
contains the number 0. You can visualize this as follows:

� The second set is the set which contains the set which contains 0. Here,
we have a box within a box, a set within a set. You can visualize this as
follows:

4

� The third set contains two elements, one is 0 and the other is another
set. This inner set contains two elements as well, another 0 and another
set. This third inner set contains only one element which is the number
0. This can be visualized as:

Each blue box in the images represents a set.

Subsets

If all the elements of one set is contained within another, like for example if:

A = {1, 2, 3}

B = {1, 2, 3, 4, 5, 6}

Which can be visualized as:

We say that A is a subset of B denoted A ⊆ B.

5

Given two sets A and B, we say that A is a subset of B if
all the elements of A are contained within B, denoted:

A ⊆ B

We say that A is a proper subset of B if there is at least one
element of B which is not in A (as in A and B are not the
same sets). Proper subsets are denoted:

A (B

Definition 1.2.3 Subset

We can express in symbols how the sets mentioned above relate to each other:

N ⊆ Z ⊆ Q ⊆ R

As evident by considering this last example, subsets (also called inclusion) are
transitive:

Given three sets X, Y , and Z, and if:

X ⊆ Y

and:
Y ⊆ Z

then:
X ⊆ Z

Theorem 1.2.1 Transitivity of Inclusion

Set Builder Notation

Set builder notation is used to describe more complex sets, or specified subsets
of larger sets. For example if I want all the even integers, I would denote this
as:

S = {n ∈ Z | n is even}
Generally if I want all the elements of a set A with some desired property I
would write:

S = {x ∈ A | x has the desired property}
For a more abstract example consider all the humans on Earth named Tom.
The set describing them (given the set E which contains all humans on Earth)
would be:

T = {Person ∈ E | Person is nammed Tom}

6

Set Equality

Two sets are equal if they have exactly the same elements as each other (re-
gardless of order or repetition).

Given two sets A and B, we say they are equal if every
element in A is also in B (A ⊆ B) and every element in B
is also in A (B ⊆ A).

Definition 1.2.4 Set Quality

1.3: Operations on Sets

Now we will consider some important operations you can apply to sets. This
lets us combine sets in some logical way. We will go through each operation one
at a time.

Universe

Before we begin with operations, we need to understand the idea of a universe.
Given some set A it contextually belongs within another set called it’s universe.
For example if we are talking about sets of whole numbers, we may assume our
universe is the set of all natural numbers. The choice of universe is contextual,
and so its definition can change. One thing is generally true about it, every
set considered in the question is a subset of it. This is important in the first
operation.

Visually you can think of the universe as a box which holds all of the other
boxes, for example if a set A and a set B are part of some universe U it would
look like:

This is called a Venn diagram and it shows how the universe U contains two
sets A and B. In this case the two sets do not share any elements, and so are
distinct, which is not generally true.

A real example of a universe in action would be the following sets X and Y
begin in the universe U :

X = {1, 2, 3}
Y = {3, 4, 5}

U = {1, 2, 3, 4, 5}
Which can be visualized as:

7

In this case the two sets do share some elements and so there is a portion of the
diagram where the two sets are overlapping.

Complement

Given some set A in a universe U , it’s complement, denoted
Ac, is the set of all elements in U but not in A. That is:

Ac = {x ∈ U | x /∈ A}

Definition 1.3.1 Complement (NOT)

The idea of a universe is especially important for this definition. By comple-
menting a set we are essentially making a set of all the elements that are not
in the original set. But then you have to ask ”What are we considering?”. If I
were to ask ”What are all the elements not in {1, 2, 3}”?

Certainly the following elements are not in that set:

� 4

� −5

� π

� ”apple”

8

� The document you are reading right now.

The list of all the things not in a set is uncountably infinite. So we need to specify
that when we are taking the complement of a set, we want all the elements not
in that set, but still within our contextual universe U .

Union

Given two sets A and B, we can create a new set called A
union B denoted A ∪B defined as:

A ∪B = {x ∈ U | x ∈ A or x ∈ B}

Definition 1.3.2 Union (OR)

You can think of the union of two sets as an OR gate applied to each of its
elements:

Essentially, all the elements of the union are in either one of the two sets. For
example, if:

A = {1, 2, 3}, B = {3, 4, 5}

Then:
A ∪B = {1, 2, 3, 4, 5}

9

Intersection

Given two sets A and B, we can create a new set called A
intersection B denoted A ∩B defined as:

A ∩B = {x ∈ U | x ∈ A and x ∈ B}

Definition 1.3.3 Intersection (AND)

You can think of the intersection of two sets as an AND gate applied to each of
it’s elements:

Essentially, all the elements of the intersection of two sets are the common
elements to the sets. For example, if:

A = {1, 2, 3}, B = {3, 4, 5}

Then:
A ∩B = {3}

Note that if A ∩ B = ∅ then the sets A and B share no elements, and we call
them disjoint. The diagram on page 7 shows an example of such sets.

10

Difference

Given two sets A and B, we can create a new set called the
difference of A and B denoted A−B defined as:

A−B = {x ∈ U | x ∈ A and x /∈ B}

Definition 1.3.4 Difference

You can think of the difference operation A − B as all the elements of A but
take away the elements that are also in B. For example, if:

A = {1, 2, 3}, B = {3, 4, 5}

Then:
A−B = {1, 2}

11

Symmetric Difference

Given two sets A and B, we can create a new set called the
symmetric difference of A and B denoted A∆B defined as:

A∆B = (A−B) ∪ (B −A)

Definition 1.3.5 Symmetric Difference (XNOR)

You can think of the symmetric difference of two sets as an XNOR gate applied
to each of it’s elements:

Essentially, all the elements of the symmetric difference of two sets are in either
sets, but not both. For example, if:

A = {1, 2, 3}, B = {3, 4, 5}

Then:
A∆B = {1, 2, 4, 5}

Properties of the Set Operations

There are 12 main properties of the set operations. All sets in this subsection
are subsets of the universe U .

1. Commutative Laws

For all sets A and B:
A ∪B = B ∪A
A ∩B = B ∩A

12

2. Associative Laws

For all sets A, B, and C:

(A ∪B) ∪ C = A ∪ (B ∪ C)

(A ∩B) ∩ C = A ∩ (B ∩ C)

3. Distributive Laws

For all sets A, B, and C:

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

4. Identity Laws

For every set A:
A ∪ ∅ = A

A ∩ U = A

5. Complement Laws

For every set A:
A ∪Ac = U

A ∩Ac = ∅

6. Double Complement Law

For every set A:
(Ac)c = A

7. Idempotent Laws

For every set A:
A ∪A = A

A ∩A = A

8. Universal Bound Laws

For every set A:
A ∪ U = U

A ∩ ∅ = ∅

9. De Morgan’s Laws

For all sets A and B:
(A ∪B)c = Ac ∩Bc

(A ∩B)c = Ac ∪Bc

13

10. Absorption Laws

For all sets A and B:
A ∪ (A ∩B) = A

A ∩ (A ∪B) = A

11. Complements of U and ∅

U c = ∅

∅c = U

12. Set Difference Law

For all sets A and B:
A−B = A ∩Bc

Generalizing Intersections and Unions

Let’s say we have n sets, listed:

A1, A2, A3, . . . , An

If we want to take the union of all of them we would write it as::

A1 ∪A2 ∪A3 · · · ∪An = ∪ni=1Ai

We can then think of this set as:

∪ni=1Ai = {x | x is in some Ai}

This is very similar to sigma notation for a sum.
You can do the exact same thing with intersections:

A1 ∩A2 ∩A3 · · · ∩An = ∩ni=1Ai

We can then think of this set as:

∩ni=1Ai = {x | x is in all Ai}

Now we define some new ideas relating to sets:

Given sets A1, A2, A3, . . . , An we say they are mutually
disjoint if for all distinct i and j in {1, 2, 3, . . . , n}:

Ai ∩Aj = ∅

Definition 1.3.6 Mutually Disjoint Sets

14

Given some collection of sets, we say they are mutually disjoint if you can pick
any pair at random and regardless of which ones you pick they are disjoint (they
share no common elements).

Given sets A1, A2, A3, . . . , An we say they partition a larger
set B if:

� A1, A2, A3, . . . , An are mutually disjoint.

�

B = ∪ni=1Ai

Definition 1.3.7 Partitions

You can partition a larger set into smaller sets by breaking the larger set into
finitely many smaller sets which don’t overlap each other. Each of those smaller
pieces is called a partition. For example, if you break a set B into 4 partitions:

Power Sets

Given some set S, we define the set of all subsets to be P(S),
called the power set of S.

Definition 1.3.8 Power Sets

For example given:
S = {4, 5, 6}

The power set is:

P(S) = {∅, {4}, {5}, {6}, {4, 5}, {4, 6}, {5, 6}, {4, 5, 6}}

15

Note that the empty set is a subset of every set, and so it is an element of every
power set.

You can intuitively thing of the power set of S as the set of all ways you can
pick out elements from the set S (of size n), for example:

� You can pick out nothing (∅)

� You can pick out any single element (all the singletons).

� You can pick out any pair (all the doubletons)

...

� You can pick out any n− groupings (all the n−tons)

Given a set S where:
|S| = n

... then: ∣∣P(S)
∣∣ = 2n

Theorem 1.3.1 Cardinality of P(S)

Cartesian Product

The Cartesian product of two sets is another operation which can be applied
to two sets. Essentially, the Cartesian product is the set of all ordered pairs
which consist of one element from the first set, and one element from the other.

Given two sets A and B, we define the Cartesian product
of the two sets as:

A×B = {(x, y) | x ∈ A, y ∈ B}

Definition 1.3.9 Cartesion Product

For example, we are very familiar with:

R× R = R2

...which is the set of all point on the Cartesian plane.
(Small side tangent incoming...) Now consider P(R2), this is the set of all

subsets on the plane. This power set contains anything the can every be drawn
on a piece of paper. It contains every book, every picture (in black and white),
and the answer to every question.

16

1.5: Logic

Logic is the structure that holds all of mathematics together. Mathematics as
a whole can be thought of as an applied form of logic. This section introduced
a basic look into logic.

Logic begins with the idea of a statement, in this definition sentence, true,
and false are left undefined (on purpose because that would get too philosoph-
ical):

A statement is a sentence which is either true or false.

Definition 1.5.1 Statement

We typically represent statements as variables, for example we can let P be
the statement: f(x) = x2 is continuous.

We connect statements together using connectives. The first two connec-
tives are logically identical to AND and OR gates from COE 328. The other
connectives take some more thought:

Let P and Q be statements. Then we define the following
connectives:

1. P ∧ Q means: P and Q, called a conjunction. P ∧ Q
is true exactly when both P and Q are true.

2. P ∨Q means: P or Q, called a disjunction. P ∨Q is
true exactly when one of P or Q is true.

3. P → Q means: if P then Q, called an implication. P
is the hypothesis, and Q is the conclusion. P → Q is
false exactly when P is true and Q is false, in all other
cases it is true.

4. P ⇐⇒ Q means: P if and only if Q, called a bicon-
ditional. P ⇐⇒ Q is true exactly when both P and
Q are true, or P and Q are false.

5. ¬P means: not P , called a negation. ¬P is true ex-
actly when P is false.

Definition 1.5.2 Connectives

For example, given that:

P = You speak english.

Q = You were born in Canada.

17

Notice that we are not necessarily saying P or Q is true. Similarly, when we
make connectives determining if they are true is a whole separate discussion.
We are just currently looking at what the notation means...

�

P ∧Q = You speak english and you were born in Canada.

This statement is only true when you speak English and you were born in
Canada.

�

P → Q = If you speak English, then you were born in Canada

This statement is only false when you speak English, but you were not
born in Canada. Important: Notice that if you do not speak English
the statement defaults to true.

�

P ⇐⇒ Q = You speak English if and only if you were born in Canada.

This statement is true if you speak English, and were born in Canada, OR
if you do not speak English and were not born in Canada.

Two statements P and Q are equivalent if they are true at
the same time. We denote this:

P ≡ Q

Definition 1.5.2 Eqivalent Statements

There are some basic laws which we can use regarding connectives:

18

Let P , Q, and R be statements. We then have:
1. Idempotent Laws:

P ∧ P ≡ P

P ∨ P ≡ P

2. Double Negation Laws:

¬(¬P) ≡ P

3. Commutative Laws:

P ∧Q ≡ Q ∧ P

P ∨Q ≡ Q ∨ P

4. Associative Laws:

(P ∨Q) ∨R ≡ P ∨ (Q ∨R)

(P ∧Q) ∧R ≡ P ∧ (Q ∧R)

5. Distributive Laws:

P ∨ (Q ∧R) ≡ (P ∨Q) ∧ (P ∨R)

P ∧ (Q ∨R) ≡ (P ∧Q) ∨ (P ∧R)

6. De Morgan’s Laws:

¬(P ∧Q) ≡ ¬P ∨ ¬Q

¬(P ∨Q) ≡ ¬P ∧ ¬Q

7. Absorption Laws:

P ∨ (P ∧Q) ≡ P

P ∧ (P ∨Q) ≡ P

8. Implication Law:

P → Q ≡ ¬P ∨Q

Theorem 1.5.1 Connective Laws

19

Statements like 3 = x + 3 are sometimes true (in this case when x = 0).
Sometimes statements are always true, like ”1 = 1”, other times statements are
always false, like ”1 = 0”. We have special names for these cases:

A tautology is a statement that is always true, regardless
of the truth of the individual statemenets that comprise it.
A contraidction is a statement that is always false, re-
gardless of the truth the of the individual statements that
comprise it.

Definition 1.5.3 Tautologies and Contradictions

Variations of Implications

Given some implication, like:

If the sky is blue, then its day time.

We may consider some logical rearrangements of it, like:

If it is day time, then the sky is blue.

... or:
If it is not day time, then the sky is not blue.

The first logical rearrangement is called the converse of the implication, while
the second one is called the contrapositive of the implication.

Given some implication P → Q:
The converse of the implication is the implication Q→ P .
The contrapositive of the implication is the implication
¬Q→ ¬P .

Definition 1.5.4 Converse and Contrapositive

Necessity and Sufficiency

Forgive the next two examples, they illustrate the idea so I went with it...
It is absolutely necessary for you to have fingers to play piano. Therefore,

if someone is playing piano, we know with certainty that they have fingers,
therefore playing piano implies having fingers.

20

If the statement P is necessary for Q to occur, then:

Q→ P

Definition 1.5.5 Necessity

If you want to climb a wall, there are many ways you can do it but it is sufficient
to have a ladder. Having a ladder tall enough implies that you can climb the
wall.

If the statement P is sufficient for Q to occur, then:

P → Q

Definition 1.5.6 Sufficiency

Predicate

The statement:
4 = x+ 4

Is technically not a statement until you actually try to assign a value. This
is because the above statement is not simply True or False, its ”truth value”
depends on what you choose for x. Once you make a choice for x then it becomes
either true or false, and so it is a statement. So if our original sentence is not a
statement, what is it? It is called a predicate.

A predicate is a sentence that contains a finite number of
variables and becomes a statement when specific values are
substituted for the variables. The domain of a predicate
variables is the set of all values that may be substituted in
place of the variable.

Definition 1.5.7 Predicate

Quantifiers

But what if our predicate is true/false for all choices of our variable? For
example in the predicate:

x+ x = 2x

Regardless of the choice of real number x, the predicate is true, and so we must
be able to convert it to a statement without substituting in a value for x. We

21

want to be able to say: For all x values, x + x = 2x. You can write that as:

∀x(x+ x = 2x)

The universal quantifier is ∀ and is read ”for all”. A uni-
versal statement ∀xP (x), where P (x) is a predicate, means
that for all x in the domain, the predicate P (x) holds true.
For ∀xP (x) to be true, the predicate must hold for all choices
of x in the domain of P (x). If there is some x in the domain
for which P (x) is false, then ∀xP (x) is false, and the choice
of x is called a counterexample.

Definition 1.5.8 Universal Quantifier

What if we don’t want to talk about the exact solution to x+ 2 = 3, rather
we want to just talk about the face that the statement has a solution. We want
to be able to say: There exists a value x, such that x + 2 = 3. You can write
that as:

∃x(x+ 2 = 3)

The existential quantifier is ∃ and is read ”there exists”.
A existential statement ∃xP (x), where P (x) is a predicate,
means that for some x in the domain, the predicate P (x)
holds true.
For ∃xP (x) to be true, the predicate must hold for some
choice of x in the domain of P (x). If there is no x in the
domain for which P (x) is true, then ∃xP (x) is false.

Definition 1.5.9 Existential Quantifier

One important final note is the negation of the quantifiers. The negation of
∀xP (x) means that there exists some x in the domain such that P (x) is false,
as in:

¬(∀xP (x)) ≡ ∃x¬P (x)

The negation of ∃xP (x) means that there is no x in the domain such that P (x)
is true, as in:

¬(∃xP (x)) ≡ ∀x¬P (x)

2 Chapter 2: Graphs and Trees

2.1: Introduction to Graphs

Graphs are ways to study the relationship between objects. They serve as a
basis for a lot of algorithms in computer science. In this course, we look at a

22

very surface level introduction to the mathematics of graphs.
Informally, a graph is a collection of nodes (vertices) and lines which connect

those dots in some way (edges), for example:

Given this informal understanding, we want to formalize some ideas so we can
speak more precisely about graphs.

A graph G is a pair of sets, one being the vertex set of G
V (G), and the other being the edge set of G E(G). If G is
clear from context we denote the graph G as:

G = (V,E)

Definition 2.1.1 Graphs

Notice how this matches with our earlier informal definition of how a graph is
a combination of two things: nodes and lines.

Given vertices u and v, we write uv to denote the edge join-
ing vertex u and v. We say that u and v are thus adjacent.
Further, we say that vertices u and v are incident with the
edge uv, and that u and v are endpoints of that edge uv.

Definition 2.1.2 Edge Notation

Notice that we can think of edges as a binary relation on the vertices. The edge
set is just a list of pairs of vertices which are related to each other through the
edge.

We now want a way to quantify the size of a graph as compared to other
graphs. We do this using the following definitions:

23

The order of a graph G is
∣∣V (G)

∣∣.
The size of a graph G is

∣∣E(G)
∣∣.

Definition 2.1.3 Order and Size of a Graph

We assume in this course that all graphs have finite size and order. Further, we
assume that all graphs are simple, meaning:

� No edges from a vertex to itself (called a loop).

� At most one edge between vertices.

We commonly choose to represent graphs visually, with dots as vertices and
lines as edges. However they are more of an abstract idea of the relationship
between objects. While drawing a graph, you can move vertices, stretch edges,
curve edges, and apply any other isomorphism (a change which can be reverted)
to the drawing. As long as the vertices and edges are maintained it is the same
graph. For example the three following graphs are equivalent:

2.2: Degrees

In the previous section we defined the degree of a graph. In this section look at
another definition of degree being the degree of a vertex.

Given a graph G and a vertex v from the set V (G), we define
the degree of v (degG(v)) to be the number of edges incident
with v.

Definition 2.2.1 Degree of a Vertex

We only consider one theorem relating to graphs in the course. This theorem
shows that there must be a certain relationship between edges and vertices.

24

If G is a graph, then:∑
u∈V (G)

degG(u) = 2
∣∣E(G)

∣∣
Theorem 2.2.1 First Theorem of Graph Theory

This means that the sum of all the degrees of all the vertices is equal to twice
the number of edges. This fact is true if you think about how each edge will
give you two vertices, and so it will count for two in the sum.

A corollary of this theorem is that the number of odd degree vertices in a
graph must be even, otherwise the graph doesn’t exist.

3 Chapter 3: Relations and Functions

3.1: Introduction to Relations

In this section we define what a relation is and how you form them.
We will talk abut relations informally, then give the formal definition. Given

two sets A and B we want to be able to show that certain elements are related
to each other. The way in which the two sets are related to each other is called
a relation R. For example, given the two following sets:

A = {1, 2, 3, 4, 5}

B = {6, 7, 8, 9, 10}

... and let’s say a relation R between these sets is given by:

R : x is related to y ⇐⇒ x+ y = 9

Note: we denote x is related to y by R as:

xRy

Then we can see that:

�

1R8

�

2R7

�

3R6

25

We often want to draw a diagram to help understand the relation. We draw the
relation as arrows connecting elements from the two sets.

Note that we can think of the elements which are related to each other as ordered
pairs, as in:

1R8→ (1, 8), 2R7→ (2, 7), 3R6→ (3, 6)

Thinking about them in this way, you can see that they are all elements of
A × B. This relation is just a subset of A × B, in fact all relations between A
and B are subsets of A×B, as in the following formal definition:

Given sets A and B, a binary relation R from A to B is a
subset of A×B. R is a set of ordered pairs (a, b) with a ∈ A
and b ∈ B. We write aRb if (a, b) ∈ R.

Definition 3.1.1 Binary Relations

A set can also be related to itself:

We say that R is a binary relation on A if R is a subset of
A×A.

Definition 3.1.2 Properties of Relations

The following are two mini-definitions:

� A function is a special kind of binary relation from A to B such that for
each a ∈ A there is a unique b ∈ B such that aFb. Of course we typically
write aFb as f(a) = b.

� We can also define the inverse of a relation R as R−1, which can be written
as:

R−1 = {(b, a) | (a, b) ∈ R}

26

3.2: Properties of Relations

Given a binary relation R on A, we can define three useful properties it can
have:

Given a relation R on A:
� R is reflexive if for all a ∈ A, aRa.

� R is symmetric if for all a, b ∈ A, aRb ⇐⇒ bRa.

� R is transitive if for all a, b, c ∈ A, aRb∧ bRc→ aRc

Definition 3.2.1 Binary Relations on a set A

A relation which is reflexive, symmetric, and transitive is called an equiva-
lence relation.

Here are two examples of equivalence relations:

� For x, y ∈ R, xRy ⇐⇒ x = y.

– Reflexive: x = x.

– Symmetric: x = y ⇐⇒ y = x.

– Transitive: x = y, y = z → x = z.

� For lines `1 and `2, `1R`2 ⇐⇒ `1 ‖ `2.

– Reflexive: a line is parallel to itself.

– Symmetric: if `1 ‖ `2 → `2 ‖ `1.

– Transitive: if `1 ‖ `2, `2 ‖ `3 → `1 ‖ `3.

Now we discuss equivalence classes which can be constructed from equiv-
alence relations.

Given an equivalence relation R on a set A. For each a ∈ A.
we denote the equivalence class of a, by:

[a] = {b ∈ A | aRb}

Definition 3.2.2 Equivalence Classes

Informally we think of the equivalence class of a as the set of all the elements
in relation to a.

For example, the equivalence class of a line `1 denoted [`1] (using the parallel
equivalence relation) is the set of all lines with the same slope.

Here are some properties of equivalence classes:

27

Given an equivalence relation R on a nonempty set A.
� For all a ∈ A, [a] 6= ∅.

� If xRy, then [x] = [y].

� If (x, y) /∈ R, then [x] ∩ [y] = ∅.

Theorem 3.2.1 Properties of Equivalence Classes

Once again consider the equivalence relation between lines of parallelism. We
verify all the properties by:

� The equivalence class of any line is not empty since every line is parallel
to itself.

� If two line are related to each other, then they have the same slope and
so are both related to all other lines with this slope.

� If two lines are not related to each other, this means they have different
slopes. Since an equivalence class of a line contains all lines which have
the same slope, the intersection of two equivalence classes with different
sloped lines is the null set.

In a sense, we are partitioning the set of all lines into an infinite number of
disjoint sets (one for every possibles slope) who’s union is the set of all lines.
This is the exact definition of a partition.

The set of all equivalence classes of an equivalence relation
R on a set A forms a partition of A.

Theorem 3.2.2 Equivalence Classes as Partitions

But how do we find this equivalence relation?

Let P be a partition of a set A. Define the equivlence relation
induced by P to be RP , defined as:

aRP b ⇐⇒ x and y are in the same partition.

Then RP is an equivlence relation.

Theorem 3.2.3 Partitioning Equivalence Relation

28

For example, given the set A = {1, 2, 3} with a partition P of {{1, 2}, {3}}.
Then we have that RP begin all the combinations of elements in the same
partition:

RP = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)}

Note that the first set of the partition is [1] and also [2], while the second set is
[3].

3.3: Partial Orders

Partial orders give us a way to rank objects. Given some set of object, we
can denote that one succeeds another using a partial order. We typically think
about partial orders as a graph for convenience (More on this later). First we
define a new property:

Let R be a binary relation on a set A. We say that R is
antisymmetric if aRb and bRa implies that x = y.

Definition 3.3.1 Antisymmetry

A relation being antisymmetric means that it is only symmetric if the elements
are the same.

A binary relation R on a set A is a partial order if it is
reflexive, antisymmetric, and transitive.
We use the symbol � to denote this relation.

Definition 3.3.2 Partial Order

Given this definition, we look at partial orders as a way to compare elements
in a set. If two elements are related by the partial order R (either directly
of transitively) we define those two object as comparable, otherwise they are
incomparable. If every pair of element is comparable, then the partial order
is called a total order.

To get an idea of what a partial order is, we use Hasse diagram. A Hasse
diagram is a directed graph where:

� All directed edges point up (as to visually represent a hierarchy).

� Loops are omitted.

� Directed edges due to transitivity are omitted.

� All arrows are eliminated (since we made them all point up anyway).

29

For example, if we are given the set {1, 2, 3, 4, 5, 6} and the partial order |
(the divides relation), then the Hasse diagram would be:

We then have a bunch of definitions for ways the think about the greatest,
and least elements in the entire partial order, or just parts of it:

Given a partial order � on A:
� An element a ∈ A is maximal if for each b ∈ A, either
b � a or a and b are incomarable.

� An element a ∈ A is the greatest element if for each
b ∈ A, b � a.

� An element a ∈ A is minimal if for each b ∈ A, either
a � b or a and b are incomparable.

� An element a ∈ A is called the least element if for
each b ∈ A, a � b.

Definition 3.3.3 Maximal and Minimal Elements

So for example, in the Hasse diagram above:

� 1 is the least element and is minimal.

� 4, 5, 6 are maximal elements.

30

3.4: Functions

We are very familiar with functions from our calculus classes, here we will just
look at functions from the perspective of binary relations.

The idea is we think of the relation as a map or a correspondence between
an element from some set a ∈ A and some set b ∈ B, and aRb means they
correspond to each other. The added restriction is that there can only by one b
for every a.

A function f from a set A to a set B, usually denoted:

f | A→ B

... is a relation between elements of the set A (called the
domain) and elements of the set B (called the codomain),
so that for all elements a ∈ A there is a unique element b ∈ B
that is related to a by f .

Definition 3.4.1 Functions

Typically we write y = f(x) in which case we are thinking of y as the image of
x under f, meaning that x gets sent to by the influence of f .

Very importantly, codomain is not necessarily the same thing as range.
Codomain the set of all possible outputs from the function (what universal set
those outputs belong to) while the range (which we define next) also called the
image is the set of all the elements of the codomain that actually get mapped
to.

The range of a function f on a set A (also called the image)
is defined as:

{b ∈ B | b = f(a) for some a ∈ A}

The range of a function is always a subset of the codomain.

Definition 3.4.2 Range

Consider the following example of a function, draw with a mapping diagram.
The domain and codomain are labelled, as well as the range being the boxed
elements of the codomain.

31

The image of a element of the domain under the function f is the element in the
codomain which corresponds to the element in the domain. The inverse image
is the opposite.

Given a function f | A→ B and b ∈ B, define the inverse
image of b as:

{a ∈ A | f(a) = b}

Definition 3.4.3 Inverse Image

In other words, the inverse image of an element is a set of all the elements
which map to it. This set could be a singleton (as we will see it is a singleton
for injective functions). The inverse image is a subset of the domain of f .

Given some subsets of the domain, we may ask what subset of the range
(which itself is a subset of the codomain) is mapped to by this subset of the
domain. We use the notation f(U) given that U ⊆ A to denote this subset:

32

Given a function f | A→ B and subsets U ⊆ A and V ⊆ B,
we define:

�

f(U) = {b ∈ B | b = f(u) for some u ∈ U}

OR: The union of all the images of u ∈ U

�

f−1(V) = {a ∈ A | f(a) = v for some v ∈ V }

OR: The union of all the inverse images of V ∈ V

Definition 3.4.4 Functions Acting on Sets

The image of a subset U of the domain is the subset of the range of the function
which results from mapping elements of that subset U . The inverse image of a
subset V of the codomain is a subset of the domain which results from finding
the inverse image of elements of that subset V .

Injective, Surjective, and Bijective Functions

A function is injective or one-to-one no distinct pair of elements of the domain
map to the same element in the range.

A function f | X → Y is injective or one-to-one if:

∀a, b ∈ X | if f(a) = f(b)→ a = b

... or equivalently:

∀a, b ∈ X | if a 6= b→ f(a) 6= f(b)

Definition 3.4.5 Injective/One-to-One

A function is surjective or onto if the range is equal to its codomain, as in the
function maps onto all of the codomain.

A function f | X → Y is surjective or onto if:

∀b ∈ Y ∃a ∈ X | f(a) = b

Definition 3.4.6 Surjective/Onto

33

Equivalently we say the range of f is Y . The example above is injective but
not surjective.

To show that a function is surjective, start with the general form of an
element in Y and try to solve for the corresponding element in X.

In the case where a function is both, we say that it is bijective.

A function f | X → Y is bijective if it is injective and
surjective.

Definition 3.4.7 Bijections

Bijective functions have inverse relations which are also functions. Given a
function f | X → Y , we define f−1 | Y → X so that for some y ∈ Y , f−1(y) is
the unique element x ∈ X such that f(x) = y.

4 Chapter 4: Combinatorics

4.2: The Sum Rule

4.3: The Product Rule

4.6: Combinations

4.7: Pascal’s Triangle

5 Chapter 5: Number Theory

5.1: Introduction to Number Theory

Number theory is the study of numbers, usually the integers. Here, we study
properties of these numbers with some formality, and try to understand patterns
that they exhibit.

The first definition (and the only thing in this section) is formally what we
mean by even and odd numbers:

An integer x is even if x = 2k for some integer k.
An integer x is odd if x = 2k + 1 for some integer k.

Definition 5.1.1 Parity

Simply put, an even number is a multiple of two, and an odd number is one
number higher than an even number.

We then have the following theorem which talks about combining these types
of numbers.

34

� If x and y are both even, then so is x+ y and xy.

� If x is even and y is odd, then x+ y is odd.

� If x is odd and y is odd, then x+ y is even.

� x2 is even if and only if x is even.

Theorem 5.1.1 Properties of Parity

5.2: Divisors

Divisors are a fundamental part of number theory. We are often interested in
if a number divides into another number or not. Divisors let us define useful
types of numbers and algorithms.

Given some integers a and b, we say that a divides b or: a | b
if:

a | b ⇐⇒ b = ka, for some integer k

We say that b is divisible by a, and that a is a divisor of b.

Definition 5.2.1 Divisors

For example:

�

5 | 30 ⇐⇒ 30 = 6(5)

�

−3÷ 12 ⇐⇒ 12 = −4(−3)

�

12÷ 12 ⇐⇒ 12 = 1(12)

�

3÷ 0 ⇐⇒ 0 = 3(0)

Now we discuss a very important function in Number Theory, the greatest com-
mon divisor function takes in two numbers, are returns the largest divisor that
both numbers have.

35

The greatest common divisor of nonzero integers a and b is
the largest integer that divides both a and b. We denote
this gcd(a, b).

Definition 5.2.2 Greatest Common Divisors

For example:

�

gcd(12, 8) = 4

�

gcd(9, 18) = 9

�

gcd(1, 4) = 1

�

gcd(24, 16) = 8

�

gcd(−16, 4) = 4

�

gcd(0, a) = a

Notice in the last example we can let one of a or b be zero, but not both.
We now define what a prime number is, which is a fundamental idea to a lot

of number theory:

A number p > 1 is prime if its only positive divisors are 1
and p. Otherwise the number is composite.
The first few prime number starting at 2 include:

2, 3, 5, 7, 11, 13, 17, 19 . . .

Definition 5.2.3 Prime Numbers

Prime numbers form a periodic table of numbers as every number (composite
or prime) is made up of a unique product of prime numbers (called prime
factorization). For example:

�

15 = 3 · 5

36

�

100 = 52 · 22

Note that we do not call 1 a prime number because if we did, then every number
would not have a unique prime factorization, as you could multiply by 1 any
number of times.

There are an infinite number of primes, and so every number, no matter how
big, can be represented as its prime factorization. You can use the following
diagram to visualize prime factorization:

5.3: The Euclidean Algorithm

The Euclidean algorithm is an algorithm to find gcd(a, b) in a systematic way.
We use the fact that if a and b are integers with some divisor k, this means

that we can write a and b as:

a = k·?a·?a · · ·?a

b = k·?b·?b · · ·?b
Where k is of course a factor of both numbers (since it is a divisor), but both
numbers are also made up of some other numbers multiplied together (which I
just represented as some question marks).

The important take away is that k is also a divisor of b− a since:

b− a = (k·?a·?a · · ·?a)− (k·?b·?b · · ·?b) = k
(
(?a·?a · · ·?a)− (?b·?b · · ·?b)

)
Which is clearly also divisible by k. Therefore we can conclude that a, b and
b−a all have the same common divisors, and so have the same greatest common
divisor, meaning:

37

If a and b are integers that are not both zero, then:

gcd(a, b) = gcd(a, b− a)

Theorem 5.3.1 Simplifying GCDs

We can use this theorem to reduce GCD question to smaller numbers, which
makes it easier to compute. In fact we can apply this theorem as long as
many times as we want to make the numbers as small as possible, which is the
Euclidean Algorithm.

The following is a full example of using the Euclidean Algorithm to find
greatest common divisors:

Find gcd(68,132)

Example 5.3.1 Euclidean Algorithm

Applying Theorem 5.3.1 (here on called ”the theorem”):

gcd(68, 132) = gcd(68, 132− 68) = gcd(68, 64)

Applying the theorem again (and switching the order of the numbers around):

gcd(64, 68) = gcd(64, 68− 64) = gcd(64, 4)

... and again:
gcd(4, 64) = gcd(4, 64− 4) = gcd(4, 60)

... and again (I skipped many iterations):

gcd(4, 8) = gcd(4, 8− 4) = gcd(4, 4) = 4

Therefore:
gcd(68, 132) = 4

5.4: Linear Diophantine Equations

5.5: Congruences

Congruence is an important equivalence relation which uses the divisibility of
two numbers. When saying two numbers are congruent, we are saying that their
remainder is the same when divided by some number n, or in other words, they
are the same amount off of a multiple of n. In this sense 5 and 8 are ”the same”
since they are both 2 off from a multiple of 3 (we call this congruence mod 3).
Below is the formal definition:

38

Let n be a positive integer greater than one. We say that a
is congruent to b modulo n, denoted: a ≡ b(mod n) if:

a ≡ b(mod n) ⇐⇒ m | (a− b) ⇐⇒ a = b+ km, k ∈ Z

Definition 5.5.1 Congruence

You can think of congruences as a clock, for example the following diagram
shows the numbers mod 12 :

All the numbers in the same ”column” (labeled 0-11) are congruent to each
other because they are the same distance away from a multiple of 12 (hence
mod 12). For example:

�

14 ≡ 2(mod 12)

39

�

26 ≡ 2(mod 12)

Since both 14 and 26 are 2 above a multiple of 12. In general a great way to
think about congruences is:

a ≡ b(mod n) ⇐⇒ a is b above a multiple of n

This definition also allows for negative numbers, as in:

1 ≡ −3(mod 4)

Since 1 is 3 below a multiple of 4.
There are many properties of congruences, listed in the following theorem:

Given integers a, b, c, d and a positive integer n, we have:
� Reflexivity:

a ≡ a(mod n)

� Symmetry:

If a ≡ b(mod n) then b ≡ a(mod n)

� Transitivity:

If a ≡ b(mod n) and b ≡ c(mod n), then a ≡ c(mod n)

�

If a ≡ b(mod n), then: a+ c ≡ b+ c(mod n)

�

If a ≡ b(mod n), then: ac ≡ bc(mod n)

�

If a ≡ b(mod n) and c ≡ d(mod n), then a+c ≡ b+d(mod n)

�

If a ≡ b(mod n) and c ≡ d(mod n), then ac ≡ bd(mod n)

�

If a ≡ b(mod n) then ak ≡ bk(mod n), k ∈ N− {0}

Theorem 5.5.1 Properties of Congruences

40

Notice the similarities between equations and congruences:

� They are both equivalence relations.

� You can add/multiply both sides by numbers to get a new one.

� You can add or multiply two together to get a new one.

Since congruence is an equivalence relation, it can have equivalence classes:

Given a, b ∈ Z and some integer n > 0, we define the con-
gruence class of a as:

[a]n = {b ∈ Z | b ≡ a(mod n)}

Definition 5.5.2 Congruence Classes

For example:

� [0]2 represents the set of all even numbers.

� [1]2 represents the set of all even numbers.

� [2]2 = [0]2, since 2 ∈ [0]2 because 2 ≡ 0(mod 2).

41

